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Abstract-A portal frame subjected to a distributed impulse is studied on the basis of a large
deftection formulation. By assuming that the material is rigid-perfectly plastic, a complete solution
is constructed and then compared with the modal solution and the experimental results reported
by Hashmi and AI-Hassani (1975, Int. J. Mech. Sci. 17,513-523) and Bodner and Symonds (1979,
Int. J. Solids Structures 15, 1-13). The solution agrees well with the experimental results and
indicates that a great part of the input energy is absorbed by travelling plastic hinges. The possible
failure regions are discussed according to the distribution of plastic work.
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width
Young's modulus
initial kinetic energy mL I Vl
kinetic energy in second phase
non-dimensional kinetic energy in second phase Ek*IEo
kinetic energy at the end of the first phase
non-dimensional kinetic energy at the end of the first phase E:,fEo
thickness
impulse of loading
static moments of segment GB with respect to W," and VI-axis, respectively
non-dimensional quantities 1,*lmLr and It/mLr, respectively
moment of inertia of segment GB with respect to G
non-dimensional quantity 1~/mL~

moment of inertia of the cross-section of the beam
static moments of segment HB with respect to W2- and V2-axis, respectively
non-dimensional quantities JNmL?, and Jt/mL?" respectively
moment of inertia of segment HB with respect to H
non-dimensional quantity J~/mL?

half-span length of the frame
height of the frame
dynamic fully plastic bending moment of the beam
mass of beam per unit length
axial forces in horizontal and vertical beam, respectively
Eo/(maximum elastic strain energy the structure can store)
mLWoIMo
time
the time taken by the first phase
initial velocity
the velocity of midpoint C in the second phase
non-dimensional velocity V*IVo
local coordinates of deformed horizontal beam
local coordinates ofdeformed horizontal beam at the end of the first phase
local coordinates of deformed vertical beam
arc lengths of PB and QB, respectively
arc lengths of GB and HB, respectively
arc length of deformed vertical beam at the end of the first phase
non-dimensional initial kinetic energy EoiMo
angle defined in Fig. 4
final value of P
the ratio LJL I

strain rate
non-dimensional quantities Y,IL, and yJL2
non-dimensional quantity Y2,fL2
angles defined in Fig. 2
the angle between the tangent of arc GB at B and the V,-axis
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(J,o the angle between the tangent of arc HB at B and the L" ,-axis
"r, "r curvature changes ofGB and HB, respectively
"" '" non-dimensional curvature changes "r L, and "rL,
p density of material
a dynamic yield stress of material
ao yield stress of material
t" non-dimensional time liTo
t", non-dimensional time taken by the first phase I "To
w angular velocity.

INTRODUCTION

The plastic behavior of portal frames under dynamic loading is of importance in many
engineering problems, and so has been studied extensively by various methods. A classical
example is the study of the large plastic deflection response of portal frames to distributed
impulsive loading (see Fig. I). Hashmi and AI-Hassani (1975) studied this problem exper­
imentally. Their frame specimens were made of aluminium while the loading was exerted
by magnetomotive impulse. Bodner and Symonds (1979) also carried out experiments on
portal frames by means of explosive loading. Their frame specimens were made of mild
steel and titanium, both having rate-sensitive plastic behavior.

On the theoretical side of this problem, Symonds and Chon (1979) proposed a modal
solution on the basis of large viscoplastic deflections. The results of their theory agree well
with the experimental results reported by Bodner and Symonds (1979). At the same time,
Symonds and Raphanel (1979) studied this problem using the simplified elastic-plastic
method (SEP). The second phase of the SEP solution corresponds to the modal solution
of large deflection, while the material is assumed to be rigid-perfectly plastic in this phase.

In the literature, there is no complete solution which satisfies all the field equations of
dynamics, compatibility, end conditions at supports, plastic behavior ofmaterials and initial
conditions of this problem. Obviously, to obtain the complete solution, some idealizations
are necessary. When the energy dissipated in plastic work in a frame greatly exceeds the
elastic strain energy the frame can store, it is reasonable to neglect the elastic deformation
and to start with the assumption that the material of the frame is rigid-plastic.

The earliest analysis adopting the rigid-plastic idealization and the concept of the
travelling plastic hinge was by Lee and Symonds (1952), who considered a free-free uniform
beam subjected to a transverse pulse applied at its midpoint. The concept of the travelling
plastic hinge has been widely used in structural dynamic problems, e.g. the study by
Symonds and Mentel (1958) of the response of rigid-perfectly plastic beams under a
distributed impulsive loading.

Under intense dynamic loading, the structure usually undergoes large deflections, so
the theoretical predictions may agree with the experimental results only when the geo­
metrical effects due to large deflections are taken into account. Ting (1965) made the first
attempt to construct a complete solution to a rigid-perfectly plastic cantilever impinged by
a rigid mass at its tip on the basis of a large deflection formulation. Yu et al. (1985, 1986)
examined the dynamic response of a quadrantal circular beam subjected to a radial impact
in its own plane at its tip by a rigid mass, and Zhang and Yu (1986) investigated the large

.. II..
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Fig. I. A portal frame subjected to impulsive loading on its horizontal beam.
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deflection solution of the same problem. These investigations indicate that the geometrical
changes in the structures may reduce the final deflection significantly.

Many non-linear finite element programs have been developed recently. Although they
can compute the dynamic plastic response of structures including the effects of elasticity,
strain hardening, strain rate and geometrical non-linearity, they are time consuming when
an impulsive problem, especially involving an initial velocity discontinuity, is computed. If
the rigid-plastic complete solution of a dynamic problem can be given and compared
with its finite element solution and/or the experimental results, it is certainly helpful in
understanding the underlying mechanisms of the problem.

The aim of the present study is to analyse the dynamic response of a rigid-perfectly
plastic portal frame subjected to a distributed impulsive loading (Fig. 1) on the basis of a
large deflection formulation. The complete solution is constructed and compared with the
results of the modal solution presented by Symonds and Raphanel (1979) and the exper­
imental results reported by Hashmi and AI-Hassani (1975) and Bodner and Symonds
(1979). Adopting only the large deflection formulation, the theoretical results will be closer
to the true circumstances and the vertical beam will deform (see the Discussions section).
The final shape of the complete solution is closer to the experimental results than the modal
solution and the regions where failure may occur can be found according to the distribution
of plastic work.

ASSUMPTIONS

Suppose the frame has uniform cross-section and assume that:

(i) the frame is rigid-perfectly plastic;
(ii) the material is rate-independent, so that the dynamic funy plastic bending moment

M o is a constant for aU strain rates;
(iii) the influence of shear and axial forces on yielding can be neglected;
(iv) the strain is very small, so that the relationship between the strain and the deriva­

tive of the displacement is linear;
(v) the deflection is large, so that the dynamic equations and geometrical relations are

established according to the deformed configuration.

The impulsive loading shown in Fig. 1 is equivalent to giving a distributed initial
velocity Vo to the horizontal beam of the frame.

Due to the symmetry of the problem, only one half of the frame is analysed in the
following.

The initial kinetic energy of the frame is supposed to be dissipated by plastic bending
and this, therefore, implies a plastic hinge or hinges.

Assume the deformation model is as shown in Fig. 2. Initially, two plastic hinges start

y,

Cr---~"""""''--~,
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Fig. 2. The geometrical configuration of a half-portal frame after its large deflection in the first
phase. Points G and H denote the positions ofthe travelling plastic hinges at time t.
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to travel simultaneously from corner B. One moves along the horizontal beam towards
midpoint C, and reaches position G at time t. The other moves along the vertical beam
towards base A, and reaches position H at time t. Segment CG moves transversely down­
wards as a rigid body. The following analysis confirms that it moves with initial velocity
Vo. Segment GBH rotates about H at time t. Since the velocity at point G should be along
the vertical direction, point H must be at the same height as that of point G. It is quite
evident that neither of the travelling plastic hinges stops initially at corner B for the
compatibility of deformation on the basis of a large deflection to hold, and that the
angle between arc GB and arc HB retains rectangular because there is no rotation angle
discontinuity after the travelling plastic hinges pass by. When hinge G reaches midpoint C,
the first phase ends and the second phase starts. The deformation model in the second phase
has a fixed plastic hinge at midpoint C, and hinge H continues to move as it did in the first
phase. H is still at the same height as that of point C. The second phase ends when all the
kinetic energy is dissipated. Here we suppose that the vertical beam BA is so long that the
travelling hinge H will not reach base A by the end of the response. The experiments
reported by Hashmi and Al-Hassani (1975) and Bodner and Symonds (1979) and the
following computing examples indicate that the plastic deformation will usually not propa­
gate to base A within the interested range of the ratio y = L 2/ L, in most engineering
circumstances.

FORMULATION

First phase
As shown in Fig. 2, we establish the coordinate systems U,GW, and U2HW2, which

move transversely with travelling hinges G and H, respectively. The unit vectors in the
systems satisfy

(I)

P and Q are arbitrary points in the arcs GB and HB, respectively. According to Fig.
2 and the Notation section, we have

{

U,(x"y,) = IY' cos e\(x"y,) dx,
x,

Y,

W,(xbyd =Lsine1(x"y,)dx,

{

U,(x"y,) ~ ~: co, 8,(x"y,) dx,

W2(X2,Y2) = I, SIn 82(X2,Y2) dX2

(2)

(3)

(4)
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(5)

(6)

(7)

(8)

(9)

(10)

Since the axial deformation is neglected. it is known that GH = Yl (see Fig. 2), so the
transformation from U1GW. into U2HWz is given by

(11)



1230 Q. ZHOU el al.

Fig. 3. Forces acting on the portal frame.

Because the shear force at a travelling hinge is equal to zero, we have the force diagrams
of segments CG and GBH as shown in Fig. 3.

Since there is no vertical force on segment CG, this segment must retain its initial
velocity Vo; that is,

(12)

Suppose (t) = illk2 is the angular velocity of the segment GBH at time t; thus we have

(13)

Because H is always located at the same height as that of point G, we have

Differentiating (2) with respect to t, we obtain

{
w = 9\ = YIK~(YI)

W= (}2 =Y1K!(Y2) = VoK!(Yl)'

The velocity and acceleration of P and Q are

(14)

(15)

(16)

Vp = {-W[YI - U 1(XhYl)]-WY\Kt(Yl)W1(XI,YI)}i2

+ {wW1(X\,Yl)+WY1Kt(yaU\(Xl>YI)}j2 (17)

and

(18)

VQ = { - WW2(X2, Y2) - illYzK!(Y2)U2(XhY2)}i2+ [ciJU2(X2.Y2)

+wYz[I-Kt(Y2)W2(x2,Y2)]}b (19)

respectively.
By applying D'Alembert's principle and referring to Fig. 3, conservation ofmomentum

and the angular momentum give

(20)
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With the help of (5), (6), (17) and (19), (20) can be written as

{

NI = 12*w+wYI"I*I\* +J.*w+mY2w'h -W'h"2*J2*

N2 = myIw- l l*W+WY."I*H+J2*w+w'h"2*J.*

2Mo+l~w+my~w-211*y.w+wYIYI"I*N+J~w+w'hJ,*= O.

Referring to (13), (14) and (15), we obtain

VJ(It, +J~+myf -2UY.)
"1* = yi(2MoY. +J1*VJ+12*VJ)

The energy balance leads to

or, after tidying up,

where

1231

(21)

(22)

(23)

(24)

(25)

(26)

(27)

It should be noted that 010 = 020, because arc GB is perpendicular to arc HB at B.
This implies that the plastic work dissipated in the horizontal beam is equal to that in the
vertical beam at any instant, and so (26) results in

(28)

Indeed it can be proved that eqn (28) is equivalent to eqn (22).
In order to show the response of the frame in a general way, the non-dimensional

quantities defined in the Notation section are used in non-dimensionalizing all the equations.
For the sake of convenience in computation, the parameter "1 is adopted as the
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argument for the system of ordinary differential equations. Then we have

dr rJlK I

drJI =-();-

drJ2 'I I KI

drJl = -Y-

d/,

d
- = 'II -K 1/ 2

'II

dl2
-d = Kill

'II

dIG = 21
1

drJI

dJ I _ '11
K

) ( Y J)
drJ I - Y '12 - ~ 2

dJ2

d
-=J1K I

'II

dJH 2
-d = -J1rJIK I

'II Y

where

The initial conditions for (29) are

(29)

(30)

(31)

which form a singularity for eqns (29). To avoid this singularity, we start with 'I I being a
small non-zero value to solve eqns (29). As proved in the Appendix, when 'I I is a small
quantity, the values of the relevant quantities are

{
r = 'Ii/6, '12 = IXrJi/6y, I. = rJi/2,

12 = lX"il36, IG = rJil3, J 1 = 0, J 2 = 0, J H = O.
(32)

By taking 'I I = 10- s, the initial values of the other quantities are specified by using
(32). The system offirst-order ordinary differential equations (29) can be integrated numeri­
cally by using a Runge-Kutta procedure until 'I I = 1.0, at which travelling plastic hinge G
reaches midpoint C of the horizontal beam and the first phase ends.

Second phase
As shown in Fig. 4, the coordinate systems view. and V2HW2 are still in translational

motion, while the coordinate system vteWt is fixed on arc CB, and the Vt-axis is tangent
to arc CB at C. The angle between the VI-axis and the Vt-axis is defined as p. It is evident
that {3 = 0 when the second phase starts.

The transformation relation between the three coordinate systems is given by

{V. = V: c~s p- ~t sin {3
WI = VI sm{3+WI cos{3

(33)
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Fig. 4. The geometrical configuration of a half-portal frame after its large deflection in the second
phase.

and

It is evident that

v*. = roLl

Y2 = V*

where V· is the velocity of midpoint C of the horizontal beam. Thus,

1233

(34)

(35)

(36)

(37)

(38)

Vp = (J) x HP

= V*/L 1{ -[L , - UJ(x"L ,) cos P+ WJ(x"L 1) sin Pli2

+[U'(x.,L ,) sin P+ Wax" L 1) cos Plh} (39)

(40)

Hence, the kinetic energy of segment CBH is

Supposing arc BS oflength Y2. in the vertical beam is the deformed segment at the end
of the first phase, we have

Jft(Y2) = JS"(Y21)+2mY2.Lr(l-cos P)+2L. sin P J.*(Y2.)-2L.(l-cos P)J2*(Y2.)

+2mL~(p-sin P). (42)

The energy balance leads to

(43)
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According to the Notation section, the above equations can be transformed into the
non-dimensional forms

where

K:. =y

11:. = 11:. 1 + fJ ~.

(44)

(45)

(46)

(47)

f(fJ) = 0.5[/c(1)+ 1- 211(1) cos fJ + 212(1) sin fJ +1'3Js (1121)+ 2Y'12\ (I-cos fJ)

+2y 2 sin fJJ1(1121)-2"/(I-cos fJ)J2('121)+2(fJ-sin fJ)]. (48)

The response ends when the kinetic energy is equal to zero.. Hence, from (43) we have

fJr = 0.5exEk \ (49)

where the subscript f denotes the value of the final state.
In computing, the integration in (47) is completed by Simpson's numerical integration

procedure.
After obtaining the displacement field by integrating the curvature field at any instant,

the bending moment field at any instant may also be found by using the same principle.
The numerical results indicate that the distribution ofbending moment varies monotonously
along arc CGBHA (see Fig. 2) in the first phase and along arc CBHA (see Fig. 4) in the
second phase at any instant, and that the bending moment in segments CG and HA are
M 0 and - M 0, respectively. These results imply that the solution does not violate the yield
condition in the entire structure and is a complete solution.

NUMERICAL RESULTS AND COMPARISON WITH THE MODAL SOLUTION

In the following, we will compare our complete solution with the rigid-perfectly plastic
approximation presented by Symonds and Raphanel (1979), which is actually a large
deflection modal solution. Its deformation model corresponds to the second phase of our
complete solution.

All results here are expressed in non-dimensional form. Because the length of the
vertical beam does not affect the deformation model (see the Assumptions section), only
the results for the case Y = 1.5 are presented.

Numerical results are summarized in Figs 5-13, where the broken lines indicate the
modal solution and the full lines indicate our complete solution.

The variations of the deflection and velocity at midpoint C with time are plotted in
Figs 5, 6 and 7. The deflection increases rapidly with time during the first phase, but is
smaller than the modal solution because the initial velocity at point C in the modal solution
is 50% larger than that in the complete solution (see Figs 6 and 7). It can be seen from Figs
6 and 7 that the time taken by the first phase is about 1/3 of the whole response time. The
variation of the velocity at C with time in the complete solution at the second phase is close
to that in the modal solution, and they almost coincide under the lower loading parameter
ex = 1.0. This is because the curvature of the horizontal beam is small while the loading is
small, and hence the results in the complete solution are closer to the modal solution.

Figure 8 shows the variation of the position of travelling plastic hinge G with time in
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Fig. 5. Midpoint deflection vs time, l' = 1.5, (I) GIC = I, (2) GIC = 5. -- Complete solution;
- - - - modal solution.
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T

Fig. 6. Midpoint velocity vs time, l' = 1.5, Of = I. -- Complete solution; - - - - modal solution.
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Fig. 7. Midpoint velocity vs time. l' = 1.5. Of == S. --Complete solution; - - - - modal solution.
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Fig. 8. The position of hinge G vs time, ;' = 1.5, 'I. = 5.
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Fig. 9. Final midpoint deflection vs loading parameter, y = 1.5. -- Complete solution;
--- modal solution.
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Fig. 10. Final deflection at comer B, y"" 1.5, (I) UBf, (2) "'Bf'

modal solution.
Complete solution;
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Fig. II. Final deformed shapes, ')' 0= 1.5. :I 0= 5. - Complete solution: - - - - modal solution.

Fig. 12. The evolution of the deformed shapes with time, ')' = 1.5, (X = 6.

Fig. 13. Final deformed shapes under different loadings, )' = 1.5, (X 0= I, 2, 4, 6, 8.
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the first phase, Its travelling speed is initially equal to infinity, and then decreases gradually.
Figure 9 shows the dependence of the final deflection at midpoint C, Wc:r, on loading

parameter (x, Figure 10 shows the relationship between the final displacement at comer B
and loading parameter (x, UBF and WBr are the components of the displacement at comer B
along the directions of the undeformed horizontal beam and the undeformed vertical beam,
respectively.

The final deformed shapes of the frame when loading parameter (X = 5 are as plotted
in Fig. 11. There is no curvature change in the horizontal beam in the modal solution
because the horizontal beam does not undergo the travelling hinge phase.

From Table I, we can see the distribution of plastic work dissipated in each portion
of the structure and in each phase of the response. It indicates that most input energy is
dissipated in the first phase.

In the light of Fig. 11 and Table 1, it is found that there are three dangerous regions
in the portal frame: one is on the horizontal beam around the midpoint because on the
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Table I. The distribution of percentage of plastic work (%); loading parameter
cz = 5

Midpoint Horizontal beam Vertical beam Sum

First phase
Second phase
Sum

o
19.2
19.2

30.8
o

30.8

30.8
19.2
50.0

61.6
38.4

100.0

horizontal beam only the midpoint dissipates plastic work in the second phase; the other
two are on two vertical beams around the corners because there is a very small bending
radius at the initial stage of the response due to the initial singularity [see formula (23)].
Since the dissipated plastic work and curvature changes both concentrate in these small
regions, they are the regions where failure is most likely to occur.

Figure 12 shows the evolution of the deformed shapes of the frame with time when
a == 6. Curves 1,2 and 3 pertain to the deformed shapes in the first phase for"l == 0.3, 0.7
and 1.0, respectively, and curves 4, 5 and 6 pertain to the deformed shapes in the second
phase for P== Pr/3, 2Pr/3 and Pr, respectively. Hence, curve 6 gives the final deformed shape
of the frame.

The final deformed shapes of the frame under the different loadings are plotted in
Fig. 13. From top to bottom, these curves pertain to the loading parameters a == 1, 2, 4, 6
and 8.

The largest loading parameter for the complete solution is about a == 9. Under this
loading, comer B will finally reach the middle line of the frame (i.e. UBr == I, see Fig. 10).
The largest loading parameter for the modal solution is a == 81t/3 == 8.378.

COMPARISON WITH EXPERIMENTS

In this section, the present complete solution will be compared with the experimental
results reported by Hashmi and AI-Hassani (1975) and Bodner and Symonds (1979). Their
experimental data are listed in Table 2.

The effect of strain rate is neglected when the complete solution is compared with the
experimental results for aluminium specimens, because aluminium is considered to be
insensitive to strain rate.

Figure 14 shows the dependence of the deflection at the midpoint of the horizontal
beam on the impulse of loading. The complete solution agrees well with the experimental
results from aluminium specimens. The mean error between the modal solution and the
experiments is slightly larger than that between the complete solution and the experiments.

The final shapes obtained from the complete solution and from the experiments using
the aluminium specimens are shown in Fig. 15. The loading condition corresponds to the
experimental dot marked by a letter F in Fig. 14. The discrepancy for the midpoint deflection
between the complete solution and the experimental results is about 15 %.

Considering that mild steel is a rate-sensitive material, as a rough approximation to
this effect we may modify the complete solution by using Cowper-Symonds' law (Cowper
and Symonds, 1957)

(50)

where D == 40.4 and p == 5.0 are taken for mild steel according to Manjoine's experiments

Table 2. Experimental data

Material

Aluminium
Mild steel

L, (mm)

66
152

117
203

H(mm)

0.91
3.1

b(mm)

12.7
19.1

83 2670
228 7850
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0 0.2

I (Nsl

Fig. 14. Final midpoint deflection vs impulse, compared with experimental results of aluminium
specimens and with modal solution. - Complete solution; - - - - modal solution; h. exper·

imental results.

Fig. I S. Comparison of final deformed shape with experimental results ofan aluminium specimen,
1-= 0.1057 Ns. - Experiment; - - - - complete solution.
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(1944). In Bodner and Symonds' experiments (1979), they estimated that the experimental
mean strain rate is about 5 S-I in the light of measurements of the dynamic strain. Thus,
the ratio 0"/0"0 = 1.658 is found from (50).

It is obvious from Fig. 16 that the experimental results of mild steel specimens are
closer to the modified curve than to the unmodified curve.

0.15

0.10

o

0/
0/

/
./

¥

"'"
2 4

I (Nsl

Fig. 16. Final midpoint dcftection vs impulse. compared with experimental results of mild steel
specimens. - Complete solution; - - - - modified complete solution by taking strain rate effect

into account: 0 experiments.
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/
I

Fig. 17. Comparison of final deformed shape with experimental results of a mild steel specimen,
1= 3.515 Ns. - Experiment; - - - - complete solution.

Fig. 18. Comparison of final deformed shape with experimental results of a mild steel specimen,
I = 3.515 Ns. Experiment; - - - - modified complete solution including the strain rate effect.

The final shapes of the steel frame are plotted in Figs 17 and 18 in which, besides the
experimental results, the complete solutions with and without modification due to the
effect of strain rate are given. The experimental condition corresponds to the topmost
experimental dot in Fig. 16.

To sum up, the rigid-perfectly plastic complete solution on the basis ofa large deflection
formulation is in good agreement with the experimental results.

DISCUSSIONS

(1) It is noticed from the final shape obtained from the experiments that the curvature
of the portal frame under the distributed impulsive loading is generally small except in the
small region near the midpoint of the horizontal beam, Hence, the assumption of small
strain in the complete solution is rational for most of the frame.

(2) The assumption of large deflections in the complete solution is necessary because
it is closer to the true circumstances when the frame is subjected to intense dynamic loading.
As a matter of fact, if the geometrical effect of the large deflection is ignored, namely, the
dynamic equations are established on the initial configuration, the axial force in the hori·
zontal beam will be equal to zero and no force acts on the vertical beams. As a result, the
vertical beams will not deform at all.

(3) The magnitude of the loading is also characterized conventionally by the energy
ratio R. R denotes the ratio of the initial kinetic energy of the system to a measure of the
maximum elastic strain energy that the system can store if the material is elastic-plastic,
i.e.

(51)

After examining a one-degree-of-freedom system loaded by various pulses, Symonds
pointed out that the error between adopting a rigid-plastic model and adopting an elastic­
plastic model is of the order of l/R. Bodner and Symonds (1962) believe that the rigid-
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plastic theory is a good first-order approximate theory provided R > 3. For large deflection
dynamic plastic problems, R is general1y large; for instance, R is larger than 4 in the
experiments reported by Hashmi and Al-Hassani (1975) and Bodner and Symonds (1979).
Hence, adopting the rigid-plastic idealization, as in this paper, should be reasonable.

(4) By analyzing the first two expressions in (21), it is found that at the initial instant
the axial force of the horizontal beam, Nt. is finite, but the axial force of the vertical beam,
N 2, is infinite. This is due to an initial singularity under the impulsive loading. Therefore,
the influence of the axial force on yielding remains to be studied. The initial singularity
caused by the initial velocity discontinuity results in not only an infinite axial force N 2 and
an infinite curvature K2* in the vertical beam but also a considerable shear force near the
corners in the horizontal beam. However, in this paper, we ignore the effect of the shear
force on the yield condition.

(5) Compared with the modal solution, the complete solution presented in this paper
provides not only a better deformed shape for the frames, but also a more reasonable
distribution ofenergy dissipation and curvature, which are important for predicting whether
failure occurs or not. The modal solution can predict a reasonable final deflection at the
midpoint, but its initial kinetic energy is 75% of the true initial kinetic energy and it
oversimplifies the energy dissipation pattern in the frames. It may be that the final shape
predicted by the complete solution still has an unrealistic cuspidal point at the midpoint of
the horizontal beam, but this may be avoided if the elastic and strain-hardening behaviors
are taken into account. Additional assumptions are needed to determine the strain near the
midpoint.

CONCLUSIONS

(I) The rigid-perfectly plastic complete solution is constructed on the basis of a large
deflection formulation for portal frames subjected to distributed impulsive loading. Possible
failure regions may be found by considering the distribution of plastic work.

(2) The complete solution agrees well with the experimental results reported by Hashmi
and AI-Hassani (1975) and Bodner and Symonds (1979), and the discrepancies between the
complete solution and the experimental results are acceptable in engineering. This confirms
that the concept of the travelling plastic hinge and the assumptions adopted in this paper
are reasonable, provided the ratio R [see (51)] is large.

(3) Modified by Cowper-Symonds' law to take the strain rate effect into account, the
complete solution may predict the dynamic behaviors of frames made of rate-sensitive
materials well.
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APPENDIX

When" I is small in comparison with unity, 8 I and 8 2 are small too, so that

(AI)

From the definitions of II> 12, lG, II' 12 and 1M, it is easy to obtain an estimation of the order of these quantities,
that is,

{
II = "i/2, 12 = KI"U6, IG = "U3-Ki"i/20
J, = "V2, 12= K2"i/6, J M = "i/3-Ki"V20.

The first-order derivative can be taken as the first-order difference when"" "2 and t are small. Hence,

and with the help of (15),

Using (23), (A4), (A2) and (30), we obtain

(A2)

(A3)

(A4)

(AS)

By analyzing the order of term "2/"1 in (AS), it is verified that"2 has the same order as '11 when "1 and"2 are
small, that is,

(A6)

Thus, it is easy to demonstrate that

Using (A3), (A7) and the first equation in (29), we have

", =J6r.

(A7)

(A8)

Ignoring the terms with order higher than ,,~ and using (A2) and (A8), we obtain the initial values as in (32).


